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Abstract

Recently, the classical auxiliary field methodology has been developed as a new simulation technique for performing

calculations within the framework of classical statistical mechanics. Since the approach suffers from a sign problem, a

judicious choice of the sampling algorithm, allowing a fast statistical convergence and an efficient generation of field

configurations, is of fundamental importance for a successful simulation. In this paper we focus on the computational

aspects of this simulation methodology. We introduce two different types of algorithms, the single-move auxiliary field

Metropolis Monte Carlo algorithm and two new classes of force-based algorithms, which enable multiple-move

propagation. In addition, to further optimize the sampling, we describe a preconditioning scheme, which permits to

treat each field degree of freedom individually with regard to the evolution through the auxiliary field configuration

space. Finally, we demonstrate the validity and assess the competitiveness of these algorithms on a representative

practical example. We believe that they may also provide an interesting possibility for enhancing the computational

efficiency of other auxiliary field methodologies.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the last few years the auxiliary field methodology has undergone a fast development causing a

considerable extension of its scope of application in physical and chemical research. Its underlying strategy

is to map the many-particle problem onto one of independent particles interacting with an auxiliary field by

using the complex Hubbard–Stratonovich (HS) transformation. The technique has so far primarily been

used as an alternative approach to deal with quantum systems of fermions or bosons.

The so-called auxiliary field quantum Monte Carlo (AFQMC) method for fermionic systems uses the HS

transformation to replace the exact imaginary-time propagator by an ensemble average of propagators of
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independent particles subjected to a time-dependent fluctuating auxiliary field. In this way the calculation of

the exact energy is reduced to multiple independent calculations, each of which costs essentially the same as

one Hartree–Fock iteration. The approach possesses two significant advantages over other ab initio

quantum Monte Carlo methodologies: (1) that the antisymmetry of the multi-electron wave function is

automatically incorporated and (2) that it is directly applicable to excited states. The technique has ex-

tensively been used to deal with strongly correlated systems of electrons like the Hubbard model [1,2]. It has

then further be applied to electronic structure calculations of atoms and small molecules. However, its

usefulness has severely been limited by strong convergence difficulties due to a numerical sign problem
prohibiting its application to larger cases [3,4]. To overcome this instability, Rom et al. [5,6] proposed the

shifted contour auxiliary field quantum Monte Carlo (SC-AFQMC) method. In this strategy the contour of

integration of the functional integral is shifted into the complex plane by employing Cauchy�s integral

theorem. The path is chosen in a manner, so that it goes through the imaginary stationary point of the

integral corresponding to the mean field (MF) solution. In this way a considerable acceleration of the

statistical convergence of the Monte Carlo integration could be achieved, which has extended the range of

application of AFQMC significantly.

Recently, another method based on the auxiliary field technique has been developed, the classical
auxiliary field Metropolis Monte Carlo (AFMC) method [8–10], conceived for performing classical sta-

tistical simulations within an isothermal ensemble. It relies on the concept of recasting the conventional

particle representation of the classical partition function in a field-theoretical formulation using the HS

transformation. The motivation for developing this method was twofold [10]: (1) circumventing the

particle insertion problem of traditional grand canonical Monte Carlo (GCMC) methods [11]. The dif-

ficulty manifests itself in a vanishingly small particle creation or destruction probability in systems of

high density, thereby invalidating the algorithm. In the auxiliary field approach, the problem does not

occur, since no particle insertion algorithm is employed; (2) providing a simulation tool for multi-scale
modeling [12], thus opening the perspective for treating theories of different length scales within a unified

framework.

The basic technique, however, suffers from a sign problem of the type also encountered in the AFQMC

method, causing a bad statistical convergence of the thermodynamic averages in the low temperature

and/or large system size regime. To reduce the difficulty, the AFMC method also involves strategies based

on the contour-distortion technique. They rely on the concept of performing an exact transformation of the

partition function integral by shifting the integration path in a way that it crosses or at least comes close to

as many critical points as possible giving an important contribution to the overall entity. A suitable choice
for the shift is gained with a specific selection procedure, which provides a new representation of the

partition function. For the purpose of improving the statistical behavior of the grand canonical method two

of such procedures have been devised. The first one uses the MF solution and leads to the mean field

representation (MFR) of the partition function. It employs a similar strategy as the one adopted in the SC-

AFQMC method of Rom et al. The second procedure utilizes the method of Gaussian equivalent repre-

sentation, a sophisticated technique which was originally developed by Efimov and Ganbold [13] for the

analytical approximation of functional integrals, and leads to its Gaussian equivalent representation (GER)

[14]. An important aspect of both procedures is that they both provide strictly exact representations of the
partition function [5,10,14] and they do not require any approximation for improving the convergence

properties in the simulation.

So far, essentially analytical transformation methods have been considered, to reduce the computational

costs of the auxiliary field methodology. In this paper we tackle the problem in a numerical way by taking

into account its computational aspects. Here we report on various sampling algorithms, which allow a fast

statistical convergence and an efficient generation of field configurations. Especially, we focus on a new

preconditioning technique which permits to adjust them on the specific requirements of the auxiliary field

configuration space.
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This paper is organized as follows. First, we review the basic auxiliary field theory and the integral

transformation techniques, to make the methodology amenable for simulation. Then, we give a recipe for

performing an optimal reweighting and discuss the close connection between the statistical behavior of the

method and the choice of the reference system. In the following two sections we consider the technical

aspects and discuss the advantages and drawbacks of the standard algorithms for sampling the auxiliary

field configuration space. Afterwards, we introduce our new force-based algorithms relying on multiple-

move propagation strategies. Then, to further optimize the calculation, we describe a preconditioning

scheme, which permits to adapt these algorithms to the characteristic properties of the phase space sampled.
Finally, we demonstrate their applicability and assess their efficiency on a representative model system. To

conclude, we summarize the main results and end with a brief outlook.

2. Classical auxiliary field theory

To derive the basic field representation of the grand canonical partition function, let us start with the

classical canonical partition function in particle representation

QðN ; V ; T Þ ¼ 1

h3NN !

Z Z
d~RRN d~PPN exp½�bHð~RRN ;~PPN Þ�; ð1Þ

where

Hð~RRN ;~PPN Þ ¼
XN
I¼1

PI
!2

2mI
þ Uð~RRN Þ ð2Þ

represents the Hamilton function and ~RRN and ~PPN the set of particle positions f~RR1; . . . ;~RRNg and particle

momenta f~PP1; . . . ;~PPNg, respectively. Under the assumption that the particles in the system interact through

a two-body potential Uð~RRI �~RRJ Þ, finite at zero distance, we can recast the canonical partition function in its

basic field representation. For this, we first rewrite the potential energy Uð~RRN Þ in Fourier series represen-

tation, which is quadratic with respect to the density coefficients. This results in

Uð~RRN Þ ¼ 1

2

X
~GG

q�ð~GGÞUð~GGÞqð~GGÞ � 1

2
NUð0Þ; ð3Þ

where the coefficients of the potential are positive or negative depending on whether they describe the

repulsive or attractive part. In the subsequent step the terms with Uð~GGÞ > 0 are then linearized by applying

the complex HS transformation [6]

exp
n
� a

2
x2
o
¼

ffiffiffiffiffiffiffiffi
1

2pa

r Z 1

�1
exp

�
� y2

2a
� ixy

�
dy; ð4Þ

where the real constant a > 0, while the terms with Uð~GGÞ < 0 are subjected to the real HS transformation
obtained by substituting x with ix0. Since the repulsive part of the potential results in a complex integrand,

we can reasonably assume that it essentially determines the convergence behavior of the auxiliary field

method. Therefore, in the further development we only take this part into account, which should be

considered as the most unfavorable case.

After some simple algebra we then get the field representation of the canonical partition function in a

complex distribution formulation. Using subsequently the relation between the grand canonical and ca-

nonical partition function [15],
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Nðl; V ; T Þ ¼
X1
N¼0

exp½blN �QðN ; V ; T Þ; ð5Þ

where l denotes the chemical potential, we finally obtain the complex distribution formulation of the grand
canonical partition function

Nðl; V ; T Þ ¼
Z

DrU exp
	
� bV lVT

eff



; ð6Þ

with the effective potential

V lVT
eff ¼ 1

2b2

X
~GG

r�ð~GGÞU�1ð~GGÞrð~GGÞ � v
bV

Z
exp½�irð~rrÞ�d~rr; ð7Þ

where rð~rrÞ represents the grand canonical auxiliary field and DrU / drð~GG ¼ 0Þ
Q

~GG>0 drRð~GGÞdrIð~GGÞ the

field measure. The constant v is a parameter depending on l through the relation

v ¼ V
k3

B

exp bl

�
þ 1

2
bUð0Þ

�
: ð8Þ

This formulation of the grand canonical partition function, however, does not permit the crude appli-

cation of the standard multi-dimensional integration techniques, like the Metropolis Monte Carlo (MC)
algorithm. The problem is related to the complex nature of the Boltzmann-factor, which causes a bad

statistical convergence of the thermodynamic quantities. Thus, to make the methodology amenable for

computation, the contour-distortion technique based on Cauchy�s integral theorem [16] has to be applied. It

consists in distorting the integration path of the integral into the complex plane in such way that it passes

through or at least comes close to its critical points. In practice, this is achieved by adding a constant shift

to each field degree of freedom according to the prescription

rR=Ið~GGÞ ! rR=Ið~GGÞ þ iwR=Ið~GGÞ: ð9Þ

This leads then to the contour-distorted grand canonical partition function in complex distribution for-

mulation. For the purpose of the simulation the grand canonical partition function in complex distribution

formulation has further to be recasted in a real distribution formulation. Using the fact that the partition

function is a purely real quantity, we finally obtain the contour-distorted grand canonical partition function

in real distribution formulation

Nðl; V ; T Þ ¼ exp
1

2b

X
~GG

w�ð~GGÞU�1ð~GGÞwð~GGÞ
" # Z

DrU cos bV I=lVT
eff

� �
exp

h
� bV R=lVT

eff

i
; ð10Þ

where

V R=lVT
eff ¼ 1

2b2

X
~GG

r�ð~GGÞU�1ð~GGÞrð~GGÞ � v
bV

Z
exp½wð~rrÞ� cosðrð~rrÞÞd~rr; ð11Þ

V I=lVT
eff ¼ 1

b2

X
~GG

w�ð~GGÞU�1ð~GGÞrð~GGÞ þ v
bV

Z
exp½wð~rrÞ� sinðrð~rrÞÞd~rr; ð12Þ

represent the real and imaginary part of the effective potential, respectively. With the objective of ame-

liorating the convergence behavior of the methodology, two procedures for judiciously selecting the shifting

function have been developed, the MFR and GER procedure. In this work the more efficient GER
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approach has been used for testing and assessing the efficiency of our algorithms. For a detailed discussion

of these strategies and their convergence properties we refer to [8–10].

3. Computational aspects

3.1. Choosing the reference system

Within the classical auxiliary field approach the thermodynamic average of a physical property A can be
expressed in the general form

hAi ¼
R
DrA½r�q½r�R

Drq½r� ; ð13Þ

where Dr represents the field integration measure and A½r� the estimator belonging to the real and non-
positive definite distribution q½r�. It is a well-known fact that the computation of averages in the presence of

such a distribution poses a practical problem. The standard numerical integration techniques, such as the

MC algorithm, cannot be used directly for sampling, since they make sense only for real and positive

distributions [17]. The common approach in such a case is to employ a reweighting procedure, which

consists in factorizing the original distribution into a real and positive part, called the reference distribution,

and a remainder, which is included in the estimator. The ensemble average of the property A is then cal-

culated by evaluating the following expression:

hAi ¼
Z

DrA½r� q½r�
qref ½r� q

ref ½r�
� �� Z

Dr
q½r�

qref ½r� q
ref ½r�

� �
¼ A½r� q½r�

qref ½r�

� �ref
,

q½r�
qref ½r�

� �ref

; ð14Þ

where the brackets h� � �iref denote the average taken with respect to the real and positive definite reference

distribution qref ½r�. In practice, the averages in the numerator and denominator are approximated by their

respective discrete sum [11]

hAi � lim
srun!1

Xsrun

i¼1

A½ri�
q½ri�

qref ½ri�

( ), Xsrun

i¼1

q½ri�
qref ½ri�

( )
; ð15Þ

where srun defines the total number of auxiliary field configurations sampled from the reference distribution

with a suitable sampling procedure. A crucial aspect for the evaluation of hAi is to find the reference

distribution, which minimizes the standard deviations of the averages of the numerator and denominator

and is independent of the estimator A½r�. A solution to the problem is obtained through the application of
the variational method, which provides the absolute value of q [18],

qref ½r� ¼ jq½r�jR
Dr q½r�j j ð16Þ

and thus the average of the sign in the denominator of Eq. (14),

hsignðq½r�Þiref ¼
R
Drq½r�R
Drjq½r�j ; ð17Þ

with the optimal SD

rðhsignðq½r�ÞirefÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � hsignðq½r�Þiref

2

q
: ð18Þ
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The sampling technique, relying on this choice of the reference distribution, will in the following be referred

to as the conventional procedure and the corresponding distribution as the conventional distribution. Note

also that all the auxiliary field simulations of this work have been performed employing this procedure,

unless explicitly specified otherwise. The sign problem now occurs when the average of the sign is van-

ishingly small and, unless a huge number of configurations is sampled, its large statistical fluctuations

render the measurement meaningless. Finally, it is also worth stressing that the appropriate choice for the

reference distribution depends mainly on the external conditions imposed on the system and therefore in

some cases also other choices may be useful.

3.2. Sampling the auxiliary field configuration space

A successful simulation within the auxiliary field approach requires a judicious selection of the sampling
algorithm, allowing a fast statistical convergence and an efficient generation of field configurations. There

are essentially two points to take into account: (1) the correlation of the configurations, entering the

variances of the numerator and denominator [19], and (2) the computational expense required, to generate

them. It is clear that an ideal algorithm would be one which generates a sequence of configurations only

slightly correlated at low computational cost.

In our subsequent investigation we will consider the following algorithmic alternatives:

1. Gaussian random numbers

2. Metropolis Monte Carlo
3. Molecular dynamics

4. Mixed molecular dynamics/Monte Carlo

To begin, let us first analyze the expression of the grand canonical partition function given in Eq. (10).

An obvious simple possibility appears directly from the shape of the original distribution q½r� and consists

in evaluating the ensemble average of the physical property A by generating configurations with respect to

the Gaussian distribution

qref ½r� / exp

"
� 1

2b

X
~GG

r�ð~GGÞU�1ð~GGÞrð~GGÞ
#
: ð19Þ

The technique is called the auxiliary field Gaussian random number (AFGRN) algorithm which is of similar

type as the one commonly employed in AFQMC calculations [5,20]. At first sight it seems particularly

attractive, because of the easy implementation and the fast generation of configurations. In addition, no

data correlation must be considered in the averaging procedure, since all the configurations are statistically

independent. We applied this technique to the computation of our auxiliary field functional averages and

found that it works best in the high temperature and/or small system size regime, where the reference system
is a good approximation to the system of interest. However, at lower temperatures and/or larger system sizes

this reference system is inadequate, because the statistics are significantly deteriorated due to the occurrence

of the sign problem. This renders the AFGRN algorithm very inefficient under these external conditions.

We already know from Section 3.1 that the best estimator-independent choice for the reference distri-

bution is provided by the conventional procedure, i.e.,

qref ½r� / exp
	
� bV ref

eff



; ð20Þ

with the reference effective potential defined as

V ref
eff ¼ V R

eff �
1

b
ln cosðbV I

effÞ
�� ��; ð21Þ

where V R
eff and V I

eff represent the real and imaginary part of the effective potential given through the Eqs. (11)

and (12), respectively. By analyzing the above expression for V ref
eff , we can easily deduce that its hypersurface
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can be described by isolated valleys separated by infinite logarithmic barriers. Thus, the situation we have

to deal with is a distribution with a discontinuous configuration space. For an efficient sampling of such a

distribution, we must regard two important aspects: (1) our sampling technique has to circumvent the

problem of ergodicity, i.e., it must be able to cross the barriers without difficulties, so that the system can

reach the equilibrium; (2) it must permit to sample efficiently all the relevant parts of the phase space

belonging to qref ½r�.
An appropriate method for such purposes is the MC algorithm which was originally developed by

Metropolis et al. [21]. It is a purely stochastic algorithm, which relies on the concept of importance sam-
pling causing that the phase space trajectory migrates preferentially among the states, where the Boltzmann

weight of the reference system is large. The technique constructs a Markov process [11,22], to generate a

sequence of configurations with the desired distribution. It generally consists of two steps:

Step 1. Choose a new configuration rn with probability amn by randomly displacing a single degree of

freedom at a time.

Step 2. Accept rn with probability pA=mn as a member of the Markov chain or reject it and keep the old

configuration rm instead.

A suitable scheme for constructing such a sequence involves choosing a transition matrix p, which satisfies
the condition of microscopic reversibility, qmpmn ¼ qnpnm, and the normalization condition,

P
n pmn ¼ 1,

simultaneously. One such scheme has been suggested by Metropolis et al. [21] and is commonly known as

the asymmetrical solution [11]. Now, employing this method in conjunction with the fast Fourier trans-

formation (FFT) technique, to efficiently calculate the effective potential and the field estimators, provides

us the so-called auxiliary field Metropolis Monte Carlo AFMC method. In order to be useful for auxiliary

field computation, it is crucial that this method generates a trajectory, which hits several times the relevant

states of the system of interest located around the critical points of the partition function integral. In

practice, it appears that, as long as only a few degrees of freedom are required to accurately describe the
physical system, this algorithm represents a viable procedure for accelerating the statistical convergence of

the auxiliary field methodology.

A disadvantage of the original Metropolis algorithm, in cases when one has to deal with many field

degrees of freedom, is that only one degree of freedom at a time is moved, to generate a new state. This may

be changed so that several or all the degrees of freedom are moved simultaneously. Such a strategy has been

adopted by Chapman and Quirke [23], who were able to demonstrate that with multiple-move propagation

the equilibration of many-particle systems can be achieved more rapidly. However, a major problem of

their approach is that the acceptance rate of the Metropolis procedure is drastically lowered with increasing
number of degrees of freedom and we can reasonably expect that the same phenomenon would equally

appear, if we would utilize it in conjunction with our auxiliary field methodology. In our case, the use of a

force-based approach seems to be much more appropriate. Although such a strategy is certainly more

expensive per cycle due to the force computation, it should nevertheless represent a major improvement,

because the forces guide the sampling to the important regions of phase space and thus the field degrees of

freedom are no longer randomly updated.

The basic concept of the force-based approach is to recast the average of a functional O in an expression,

which is isomorphic to an average in the canonical ensemble. This is achieved by introducing for each field
degree of freedom ri a momentum pr=i and reformulating the average according to [24,25]

hOi ¼ hOicanon; ð22Þ

where

hOi ¼
R
DrO½r� exp � bV ref

eff ½r�
	 
R

Dr exp � bV ref
eff ½r�

	 
 ð23Þ
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is the average of O, while

hOicanon ¼
R
Dpr

R
DrO½r� exp � bH ref

eff ½pr; r�
	 
R

Dpr

R
Dr exp � bH ref

eff ½pr; r�
	 
 ð24Þ

defines the average of O with respect to the resulting canonical distribution. The function

H ref
eff ½pr; r� ¼ Ekin½pr� þ V ref

eff ½r� ð25Þ

represents the Hamiltonian consisting of the reference effective potential V ref
eff ½r� and the kinetic energy

Ekin½pr� ¼
XNr

i¼1

p2
r=i

2mr=i
; ð26Þ

where Nr is the total number of degrees of freedom and mr=i the mass corresponding to the ith one.

To evaluate the above canonical ensemble average in a purely deterministic fashion, the extended system
molecular dynamics (ESMD) method of Nos�ee [26] can be employed. The technique makes use of an ad-

ditional degree of freedom s, which acts as an external heat bath on the physical system, to adjust the

particle kinetic energy to the desired average value. During an ESMD simulation the augmented set of

degrees of freedom is evolved dynamically through the extended phase space, thereby producing a tra-

jectory over which the desired time averages are then estimated. To relate a time average of an observable O
to its corresponding canonical ensemble average, the method employs the concept of the quasi-ergodic

hypothesis [11]. The desired expectation value is finally recovered by taking into account relation (22). In a

mathematical formulation this can be expressed in the following way:

lim
srun!1

hOiESMD
srun

¼ hOiESMD
canon ¼ hOicanon ¼ hOi ð27Þ

with the time average defined as

hOiESMD

srun
¼ 1

ðsrun � s0Þ

Z srun

s0

O½rðsÞ�ds; ð28Þ

where the estimator O is assumed to be a function of the set of auxiliary field degrees of freedom rðsÞ
depending implicitly on the heat bath variable s. Such an approach was already employed by Kogut and

Sinclair [27] for the simulation of lattice systems of quantum chromodynamics. An alternative to the purely

deterministic approach is to combine the Newtonian dynamics with the stochastic collision thermostat of

Andersen [28]. This strategy couples a heat bath to the physical system by introducing stochastic forces that

act on the particles of the sample and change their kinetic energy. In practice, at intervals, the value of the
momentum of a randomly selected particle is chosen afresh from the Maxwell–Boltzmann distribution with

the desired average kinetic energy. This corresponds to a collision with an imaginary heat bath particle. An

alternative to considering only one particle at a time is to select the momenta of all particles at once, i.e., to

perform massive stochastic collisions. Such a technique has been employed by Andrea et al. [29]. An ob-

vious advantage of these stochastic thermostating procedures over the deterministic one is that the ran-

domization prevents the system trajectory to be trapped in the bottlenecks of phase space and therefore

helps to satisfy the condition of ergodicity. This is a useful property, especially if one has to sample a

hypersurface with a large amount of local minima, such as in case of the auxiliary field approach.
However, all these algorithms, if employed within the conventional procedure, would always suffer from

their inability to overcome the logarithmic barriers. The hybrid Monte Carlo (HMC) method of Duane

et al. [22] copes with the difficulty by making use of the integration errors introduced through finite dif-

ference approximation of the trajectory. The method combines the advantages of the molecular dynamics
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(MD) method with those of the MC method. 1 In essence, the algorithm consists in numerically integrating

Hamilton�s equations of motion and thereby propagating the system trajectory a predefined number of time

steps. Under the assumption that the time step is large enough, to get a reasonable energy drift, the final

state of the sequence is accepted or rejected by performing a Metropolis test. If the new state is accepted as

a member of the Markov chain, the trajectory continues to evolve through phase space untouched,

otherwise new velocities are sampled from a Maxwell–Boltzmann distribution and the direction of

the trajectory is changed. The Metropolis procedure removes the integration errors and thereby makes the

algorithm exact. In practice, the time step is usually chosen as large as possible and is only restricted by the
Metropolis acceptance rate, which should be kept satisfactory high. This enables a fast propagation

through phase space and permits to pass through the logarithmic barriers. However, the usefulness of the

algorithm depends on the size of the hurdle that has to be taken by the trajectory. Consequently, a good

compromise between acceptance rate and ergodicity must be found which is not always possible. Fur-

thermore, it can never be guaranteed that all the regions are really accessed, unless the phase space is

everywhere of equal shape. This increases the need for the development of new algorithms, to overcome

such difficulties.

In the following we propose two new classes of force-based algorithms for auxiliary field computation,
which permit to cope with the problems mentioned previously, while preserving at the same time the ad-

vantages of multiple-move propagation.

3.3. Force-based auxiliary field algorithms

Their underlying concept relies on a reweighting strategy and consists in splitting the reference distri-

bution qref ½r� of the ensemble average of a physical property A,

hAi ¼
R
DrA½r�q½r�R

Drq½r� ¼
Z

DrA½r� q½r�
qref ½r� q

ref ½r�
� �� Z

Dr
q½r�

qref ½r� q
ref ½r�

� �
; ð29Þ

in a sampling distribution qsamp½r� and a remaining distribution qrest½r�,

hAi ¼
Z

DrA½r� q½r�
qref r½ � q

rest½r�qsamp½r�
� �� Z

Dr
q½r�

qref ½r�q
rest½r�qsamp½r�

� �
: ð30Þ

The average is then calculated as follows:
Step 1. Start from a configuration rm, which belongs to the configuration space of qref ½r�, and propa-

gate the system from state rm to state rn by using an algorithm, which generates configurations from

qsamp½r�.
Step 2. Check if rn also belongs to the configuration space of qref ½r� by performing an additional ac-

ceptance/rejection step with regard to qrest½r�. This can be done either with a Metropolis or a von Neu-

mann procedure.

As we can easily convince ourselves this strategy possesses all the advantageous features for cases where

one has to deal with a distribution having a discontinuous configuration space, such as in the auxiliary field
methodology. It permits, on one hand, to recover the conventional reference distribution and, on the other,

to solve the ergodicity problem, which is a fundamental requirement to obtain reliable results from the

simulation [11].

The first technique we propose in the following utilizes the HMC method [22], to generate field con-

figurations from a suitably selected sampling distribution, and a supplementary Metropolis step, to test

whether they also belong to the configuration space of the reference distribution. We call the new algorithm

1 For a review of this or related methods we refer to [30].
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the Metropolis auxiliary field hybrid Monte Carlo (MS-AFHMC) method. A variant of it neglects the

correction step of the HMC method and is called the Metropolis auxiliary field hybrid molecular dynamics

(MS-AFHMD) method. The second technique is based on the concept of the von Neumann rejection al-

gorithm [11,31], which also relies on a two-step procedure. First, a configuration from a judiciously chosen

sampling distribution is generated, which is then submitted to a von Neumann rejection step, to test

whether it also belongs to the space of the reference distribution. Combined with the HMC or massive

stochastic collision algorithm the new technique is called either the von Neumann auxiliary field hybrid

Monte Carlo (VN-AFHMC) method or the von Neumann auxiliary field hybrid molecular dynamics (VN-
AFHMD) method.

We finally demonstrate the validity and assess the competitiveness of these algorithms on a system of

particles interacting through a purely repulsive Gaussian potential [32]. The choice of the so-called Gauss-

core (G) potential, UGð~rrÞ ¼ UGð0Þ exp½�ð~rr=lÞ2�, has been particularly motivated by the assumption that the

convergence difficulties are essentially caused by the repulsive part of the interaction due to the introduction

of the complex HS transformation. Moreover, it gives a good description of the repulsive contribution of

interactions encountered in realistic systems and fulfills all the necessary requirements to ensure the validity

of the auxiliary field methodology. Note finally that all the results presented in the following are expressed
in reduced Gauss-core units, a system of units that is natural for the model.

3.3.1. The Metropolis procedure

We now consider in more detail the first case where we generate a sequence of configurations from
qref ½r� by constructing a Markov process. Under the assumption of ergodicity, this process will converge

in the long-time limit to the desired limiting distribution, while fulfilling the condition of microscopic

reversibility

qref
m pref

mn ¼ qref
n pref

nm; ð31Þ

as well as the normalization conditionX
n

pref
mn ¼ 1: ð32Þ

Here, pref
mn defines the transition probability to reach the state rn starting from rm, within the reference state

space, using an as yet unspecified procedure, while qref
m represents the probability of the system to be in state

rm. In order to construct the Markov process, we define pref
mn as follows:

pref
mn ¼ psamp

mn prest
mn ; ð33Þ

where pref
mn, psamp

mn and prest
mn denote the transition probability of reaching the state rn starting from rm within

the state space of the reference, sampling and remaining distribution, respectively. Our algorithm now

naturally follows from the above definitions. We can easily see that the microscopic reversibility condition

in Eq. (31) is fulfilled, if we make use of a generator, which provides us configurations from qsamp½r�. In

addition, such an algorithm must satisfy the symmetric property of the stochastic matrix arest, so that qref ½r�
can finally be recovered by applying the Metropolis procedure regarding to qrest½r�. In summary, the fol-

lowing steps generate a configuration from qref ½r�:

Algorithm 1.

1. generate a uniform random variate, n, on ð0; 1Þ;
2. generate a configuration rn from the distribution qsamp½r�;
3. perform Metropolis test with respect to qrest½r�, to check if rn is also part of the configuration space of

qref ½r� ! accept configuration with probability
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prest
A=mn ¼ min 1;

qrest
n

qrest
m

� �
; ð34Þ

4. if not go back to step (1).

We stress that an important aspect of this algorithm is to choose the appropriate sampling distribution

qsamp½r�, to extract meaningful results from the simulation. For this, the following points must be con-

sidered: (1) qsamp½r� should be free of zeroes in the whole configuration space, so that the ergodicity con-

dition can be satisfied; (2) it should be a good approximation to the reference distribution qref ½r�, to enable

an efficient importance sampling. This therefore also implies that the appropriate choice is strongly de-
pendent on the external conditions imposed on the system. Now, supposing that for the sampling, we make

use of the conventional procedure. Then, two possibilities naturally arise from the shape of the reference

distribution. In order to introduce them, we redefine qref ½r� in a factorized formulation

qref ½r� / G½r�H½r�Q½r� ð35Þ

with

G½r� ¼ exp

"
� 1

2b

X
~GG

r�ð~GGÞU�1ð~GGÞrð~GGÞ
#
;

H½r� ¼ exp
v
V

Z
exp wð~rrÞ

h i
cosðrð~rrÞÞd~rr

� �
; ð36Þ

Q½r� ¼ cosðbV I=lVT
eff Þ

��� ���:
We see that an obvious simple way to calculate the functional averages in accordance with this fac-

torization procedure is to generate configurations from the Gaussian distribution

qsamp½r� / G½r�; ð37Þ

employing, e.g., the Box–M€uuller method [33]. For this choice each configuration rn has equal probability to

be chosen starting from state rm, since in the sequence all the states are independent of each other. Thus, in
this case the symmetry condition of arest, arest

mn ¼ arest
nm , is always satisfied. The reference distribution qref ½r� is

finally recovered by performing a Metropolis test with respect to the remaining distribution

qrest½r� / H½r�Q½r�: ð38Þ

However, this algorithm is not useful in the low temperature and/or large system size regime, because the

acceptance probability of the Metropolis step becomes extremely small, which leads to unreliable results. In

this range it is more judicious to perform the selection

qsamp½r� / G½r�H½r� ¼ exp
h
� bV R=lVT

eff

i
ð39Þ

for the sampling distribution and

qrest½r� / Q½r� ð40Þ

for the remaining part, which provides an improved acceptance rate. Our procedure to generate configu-

rations from this qsamp½r� relies on the concept of the HMC method of Duane et al. [22]. As we already
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know from Section 3.2 this technique utilizes an MD algorithm to perform the multiple-move propagation.

According to this strategy, we introduce a fictitious time s and define the effective Hamiltonian

H samp
eff ¼ Ekin þ V R=lVT

eff ; ð41Þ

where

Ekin ¼ p2
rð~GG ¼ 0Þ

2mrð~GG ¼ 0Þ
þ
X
~GG>0

pR2
r ð~GGÞ

2mR
r ð~GGÞ

þ
X
~GG>0

pI2
r ð~GGÞ

2mI
rð~GGÞ

ð42Þ

represents the kinetic energy and pR=I
r ð~GGÞ the conjugate momentum of rR=Ið~GGÞ with mR=I

r ð~GGÞ as the corre-

sponding field mass. In order to describe the evolution of the field degrees of freedom through phase space,

we use Hamilton�s equations of motion: 2

drR=Ið~GGÞ
ds

¼ oH samp
eff

opR=I
r ð~GGÞ

¼ pR=I
r ð~GGÞ

mR=I
r ð~GGÞ

;

dpR=I
r ð~GGÞ
ds

¼ � oH samp
eff

orR=Ið~GGÞ
¼ � oV R=lVT

eff

orR=Ið~GGÞ
;

ð43Þ

where the Hamiltonian H samp
eff is the constant of the motion. Now, to generate a Markov process with the

limiting distribution qsamp½r�, we apply the standard HMC algorithm as described in Section 3.2 and

propagate the system through the corresponding phase space. For the numerical integration we use the

Velocity Verlet integrator [11] which is time reversible. This property is a necessary requirement for the

validity of the HMC method. The reference distribution qref ½r� is finally recovered by performing a Me-

tropolis test with respect to the remaining distribution qrest½r�, given in (40). The whole procedure is called

the Metropolis auxiliary field hybrid Monte Carlo MS-AFHMC method. In order to definitely accept the

HMC algorithm as a generator, we still have to convince ourselves that it satisfies the symmetry condition

of arest. We can easily see that the algorithm fulfills this requirement by considering its validity proof in the
original publication of Duane et al. [22].

Note that, in practice, we can choose the time step small enough, so that the acceptance step of the HMC

algorithm is not necessarily needed. This is due to the fact that the ergodicity problem, caused by the

logarithmic barriers, is here circumvented by generating configurations from a convenient sampling dis-

tribution qsamp½r�. The resulting algorithm is then simply reduced to the massive stochastic collision al-

gorithm of Andrea et al. with the constrain that the collisions must occur at the same time as the

supplementary Metropolis step recovering qref ½r�. In the further development this procedure will be called

the Metropolis auxiliary field hybrid molecular dynamics MS-AFHMD method.

3.3.2. The von Neumann procedure

The von Neumann procedure is based on the von Neumann rejection algorithm [11,31,34]. The strategy
consists in splitting the reference distribution function qref ½r� in a way as shown in Eq. (30), where now we

assume that qsamp½r� is a distribution, from which it is easy to generate a configuration, and qrest½r� a

function which lies between zero and one. The following steps then generate a configuration from qref ½r�:

Algorithm 2.

1. generate a uniform random variate, n, on ð0; 1Þ;
2. generate a configuration rn from the distribution qsamp½r�;

2 The respective expressions for the gradients are given in Appendix A.
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3. if n6 qrest½rn� then rn is a configuration from qref ½r�;
4. if not go back to step (1).

In practice, we choose an algorithm to produce configurations from

qsamp½r� / G½r�H½r� ¼ exp
h
� bV R=lVT

eff

i
ð44Þ

and then perform the von Neumann rejection step with respect to

qrest½r� / Q½r�: ð45Þ

We stress that in the von Neumann procedure only the above factorization is possible, because qrest½r�must
be chosen between zero and one. To sample configurations from qsamp½r�, we can again employ the HMC

method or alternatively themassive stochastic collision method. Depending on the choice of the generator, the

technique is called the von Neumann auxiliary field hybrid Monte Carlo VN-AFHMC or the von Neumann

auxiliary field hybrid molecular dynamics VN-AFHMD method. Note finally that, as in the Metropolis

procedure, we use the Velocity Verlet integrator for numerical integration and compute the gradient

expressions given in Appendix A.

3.4. Selecting the field masses

Another important aspect to consider is the choice of the appropriate field masses. A simple selection

procedure is to take one single value for all of them and estimate the error made in the numerical inte-

gration. The error estimation can be done by performing a microcanonical simulation and then evaluating
the average deviation of the conserved quantity [35],

DH samp
eff ¼ 1

srun

Xsrun

k¼1

H samp
eff ðkDsÞ � H samp

eff ð0Þ
H samp

eff ð0Þ

����
����; ð46Þ

where Ds represents the time step of the simulation. However, what is not taken into account in this
procedure is that each degree of freedom possesses a different width with respect to the sampling distri-

bution qsamp½r�, leading to an unequal speed of propagation through configuration space. In order to treat

all the degrees of freedom equally, we have therefore devised a preconditioning scheme, which allows an

individual adjustment of all the field masses. The procedure follows in spirit the AFMC method, where

during the equilibration phase the maximum displacement of each degree of freedom is adjusted, to give a

predefined acceptance rate. In practical application, the preconditioning is achieved in the so-called ad-

justment phase, in which the trajectory is propagated as under normal simulation conditions. However

now, at intervals, the configurations are subjected to a Metropolis procedure and the masses are varied until
the desired acceptance rate is obtained. Finally, all the masses are scaled through the largest one and

multiplied with the predefined value. The largest mass is then taken as the reference. In Fig. 1 we show the

masses of the field degrees of freedom as a function of the ~GG-length determined during the adjustment phase

of a preconditioned GC-MS-AFHMD simulation. In the calculation we considered a system of Gauss-core

particles of a volume of V �
G ¼ 20:0 kept at a temperature of T �

G ¼ 0:1. The input value for the l-dependent

parameter v has been estimated with the method of thermodynamic integration employing canonical

molecular dynamics results of a system of 864 particles at a density of q�
G ¼ 1:0 [8–10]. We emphasize that

the external parameters were chosen close to the limit of applicability of the GER method where the sign
problem is already severe. The field cutoff was set to E�

cut=G ¼ 40:0, which corresponds to a total number of

81 degrees of freedom [36], and for the numerical integration a time step of Ds�G ¼ 0:01 was chosen. By

analyzing the plot, we see that the value of the masses continuously increase with increasing length of the
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~GG-vectors. The discrepancy between the maximum and minimum mass approximately amounts to

D�
mr=G

� 32. Moreover, we notice that the masses of the real and imaginary part of the field degrees of

freedom show almost the same behavior, which is mainly caused by the influence of the Gaussian term in
the effective potential. Finally, we can also deduce from this investigation that a preconditioned propa-

gation should become more efficient with increasing number of degrees of freedom.

To test their usefulness in practical application, we have employed the single-mass and preconditioning

scheme in the computation of a system of Gauss-core particles using the same simulation parameters as

previously. To determine the optimal field masses, we have carried out several microcanonical auxiliary

field calculations with the single-mass scheme utilizing different field masses and performed an additional

calculation with the preconditioning scheme. In these simulations we have adjusted the average temperature

to hT �
GiNVE ¼ 0:1. In Fig. 2 we give the results for the base 10 logarithm of the average deviation of the

conserved quantity as a function of the field mass, computed with both strategies. Assuming that an error

of log10 DH samp
eff ¼ �4:5 is common in practical application [37], we can conclude from the figure that a field

mass of m�
r=G ¼ 8:1 is an appropriate choice for the single-mass scheme and that no further Metropolis step

is required to correct the discretization error. In case of the preconditioning scheme we have instead, ap-

proximately for the same accuracy, a set of field masses ranging from m�
r=G � 0:4 to 32:4. Therefore, we can

safely predict that, if we make use of this technique in the simulation, the speed of evolution of the tra-

jectory will be largely enhanced due to the smaller masses.

4. Results and discussion

In this section we demonstrate the validity and assess the efficiency of the auxiliary field algorithms

previously discussed. In order to test whether they generate the correct average values, we applied them to
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Fig. 1. Masses of the field degrees of freedom as a function of the ~GG-length determined during the adjustment phase of a precondi-

tioned GC-MS-AFHMD simulation. In the calculation we considered a system of Gauss-core particles of a volume of V �
G ¼ 20:0 kept

at a temperature of T �
G ¼ 0:1.
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the computation of a system of Gauss-core particles by employing the same simulation parameters as in the

previous calculations. In Table 1 we show the values obtained for the average density and average potential

energy per average particle number. For comparison, we give the result computed with the standard
GCMC algorithm of Norman and Filinov [39]. In this calculation we simulated a system of Gauss-core

particles of a box size of V �
G ¼ 864:0. First, we see that all the average quantities calculated with the AF-

HMD algorithms are in good agreement with the values determined with the GCMC and GC-AFMC

method. Moreover, we notice that even the run with the smaller field mass of m�
r=G ¼ 0:324 provides good

estimates for our thermodynamic properties.

Next, we regard the sampling efficiency of our multiple-move algorithms and assess their competitiveness

with respect to the single-move GC-AFMC algorithm. For this, we consider two criteria, the statistical

inefficiency and the CPU-time required, to generate a statistical independent configuration. The statistical
inefficiency, defined as [11]

s ¼ lim
srun!1

srunr2ðhOirunÞ
r2ðOÞ ; ð47Þ

Fig. 2. Base 10 logarithm of the average deviation of the conserved quantity as a function of the field mass obtained from micro-

canonical simulations, using the single-mass and preconditioning scheme. In the calculations we considered a system of Gauss-core

particles of a volume of V �
G ¼ 20:0, adjusted to an average temperature of hT �

GiNVE ¼ 0:1.

Table 1

Average density and average potential energy per average particle number obtained for a system of Gauss-core particles of a volume of

V �
G ¼ 20:0 kept at a temperature of T �

G ¼ 0:1 using different grand canonical simulation algorithms

Method m�
r=G hq�

GilVT hU�
GilVT =hNilVT

GCMC – 0:997899� 4:4E � 05 2:34104 � 2:4E � 04

GC-MS-AFHMD 8.1 0:9962 � 5:1E � 03 2:347 � 1:2E � 02

GC-MS-AFHMD� 8.1 1:000 � 1:5E � 02 2:334 � 3:2E � 02

GC-MS-AFHMD� 0.324 0:9981 � 3:5E � 03 2:3477 � 8:9E � 03

GC-VN-AFHMD 8.1 0:9983 � 4:4E � 03 2:342 � 1:1E � 02

GC-AFMC – 0:9982 � 4:7E � 03 2:341 � 1:1E � 02

prec. GC-MS-AFHMD 32.4 0:9980 � 1:4E � 03 2:3407 � 3:4E � 03

* Stochastic step every 10th MD-step, otherwise every 50th MD-step.
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determines the ability of the method in generating a new statistically independent configuration, which

contributes to the running average of the functional O, and therefore gives a measure how fast this average

converges to its limiting value. As a general rule, we can say that the smaller this quantity the faster the

statistical convergence. Since in case of the auxiliary field approach, we calculate the average of a physical

quantity A through the ratio of two averages, i.e., hA signi=hsigni, we must regard their respective sta-

tistical inefficiencies. In Table 2 we give the inefficiencies of the sign function, ssign, and the particle number

numerator, ssignnum, obtained with different grand canonical auxiliary field algorithms. For the determi-

nation of these quantities we used the block averaging method [11,38]. By analyzing the results, we note
that the preconditioned GC-MS-AFHMD algorithm produces by far the smallest statistical inefficiencies of

all the AFHMD algorithms, while achieving at the same time a high accuracy in the numerical integration.

Moreover, we deduce from the values, evaluated with the GC-MS-AFHMD algorithm using a field mass of

m�
r=G ¼ 8:1, that it is much more advantageous to perform a stochastic step at every 50th MD-step than at

every 10th MD-step. This can be explained by the fact that the trajectory is less often perturbed which

enables a faster propagation through phase space and consequently a faster generation of statistically in-

dependent configurations. Finally, we observe that choosing a Metropolis or a von Neumann procedure do

not fundamentally influence the data correlation. Their respective statistical inefficiencies are almost equal
with a slight advantage to the Metropolis approach.

The second important criterion is the computational cost required to generate a statistically independent

configuration. In Table 3 we give the CPU-times tCPU
sign and tCPU

signnum
3 needed to generate a statistically in-

dependent configuration for the sign function and the particle number numerator, respectively, obtained by

employing different grand canonical auxiliary field algorithms. First, we note that the preconditioned GC-

MS-AFHMD algorithm is again the most efficient of all the sampling methods and that the GC-AFMC

Table 2

Statistical inefficiencies of the sign function and the particle number numerator obtained for a system of Gauss-core particles of a

volume of V �
G ¼ 20:0 kept at a temperature of T �

G ¼ 0:1 using different grand canonical auxiliary field algorithms

Method m�
r=G ssign ssignnum

GC-MS-AFHMD 8.1 17.5 14.0

GC-MS-AFHMD� 8.1 420 350

GC-MS-AFHMD� 0.324 17.6 12.5

GC-VN-AFHMD 8.1 18.2 15.3

GC-AFMC – 260 220

prec. GC-MS-AFHMD 32.4 2.8 2.4

* Stochastic step every 10th MD-step, otherwise every 50th MD-step.

Table 3

CPU-times needed to generate a statistically independent configuration, obtained for a system of Gauss-core particles of a volume of

V �
G ¼ 20:0 kept at a temperature of T �

G ¼ 0:1 using different grand canonical auxiliary field algorithms

Method m�
r=G tCPU

sign tCPU
signnum

GC-MS-AFHMD 8.1 1.29 1.03

GC-MS-AFHMD� 8.1 6.99 5.83

GC-MS-AFHMD� 0.324 0.29 0.21

GC-VN-AFHMD 8.1 1.37 1.15

GC-AFMC – 0.28 0.24

prec. GC-MS-AFHMD 32.4 0.21 0.18

* Stochastic step every 10th MD-step, otherwise every 50th MD-step.

3 Machine type: IBM RS/6000-43P-140; processor/clock-rate: PowerPC_604e/332 MHz.
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algorithm is also very competitive taking the second place. The efficiency of the latter is almost comparable

to the one of the GC-MS-AFHMD method, if a field mass of m�
r=G ¼ 0:324 and a stochastic step frequency

of ms ¼ 10 is used. Finally, by comparing the von Neumann and Metropolis GC-AFHMD results for the

same simulation parameters, we see that the Metropolis procedure is more efficient in generating new

configurations.

5. Summary and conclusions

In summary, we have presented in this paper two new classes of force-based algorithms conceived for an

efficient computation within the auxiliary field methodology. They possess the major advantage over the

standard single-move Metropolis Monte Carlo algorithm to permit multiple-move propagation allowing a

faster diffusion through phase space. This is of particular importance, since the method suffers from a sign

problem, which considerably deteriorates the convergence properties in the low temperature and/or large

system size regime. The problem relates to the real and non-positive definite nature of the original distribution.

To circumvent the difficulty, it is convenient to use the conventional procedure, which consists in factorizing
the absolute value and including the remaining sign-function in the estimator. The resulting distribution

possesses a discontinuous configuration space, which splits up into isolated regions separated by barriers of

zero probability. In practical application, the sampling of such a distribution leads to a problem of ergodicity,

if one wants to use a purely deterministic algorithm. The two algorithms we propose cross the barriers without

difficulties and permit to maintain optimal convergence properties by generating configurations from the

desired conventional distribution. The first one utilizes the hybrid Monte Carlo method in combination with a

supplementary Metropolis step, while the second one makes use of the concept of the von Neumann rejection

technique. They have in common that they both rely on a reweighting strategy and employ the molecular
dynamics method, to perform the multiple-move propagation. Derived from these methods, we present in

addition several variants, which slightly differ in their suitability for practical application. Moreover, we

further optimize the sampling by taking into account that each degree of freedom possesses a different width

with respect to the sampling distribution. This leads to an unequal speed of propagation, if one utilizes only a

single fictive mass to perform the Newtonian dynamics. In this work we present a preconditioning scheme,

which allows to treat all the degrees of freedom on an equal footing by adjusting each mass independently. To

assess the competitiveness of these auxiliary field algorithms, we perform calculations on a system of Gauss-

core particles.Wefind that a variant of the supplemented hybridMonteCarlomethod in combinationwith the
preconditioning scheme is by far the most efficient algorithm in generating statistical independent configu-

rations per computational cost and enables a numerical integration of high accuracy. The single-mass algo-

rithms can instead be made as fast as the standard Metropolis Monte Carlo method, while keeping

the discretization error acceptably small. We can safely predict that with increasing resolution the benefit of

the multiple-move algorithms adopting the preconditioning scheme will considerably grow with regard to the

other ones, because the preconditioning takes care of the fact that the displacements of the coefficients with

larger ~GG-length do not significantly contribute to the evolution of the system.

To conclude, we point out that all the capabilities of the algorithms presented in this work are yet by far
not exhausted and we hope that they may also be useful for other methods dealing with a complex or non-

positive definite Boltzmann-factor.
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Appendix A. Forces on the auxiliary field degrees of freedom

In this section we give the set of first-order derivatives of the effective potential with respect to the

auxiliary field degrees of freedom:

oV R=lVT
eff

orð~GG ¼ 0Þ
¼ rð~GG ¼ 0Þ

b2Uð~GG ¼ 0Þ
þ v

bV

Z
exp wð~rrÞ

h i
sinðrð~rrÞÞd~rr;

oV R=lVT
eff

orRð~GGÞ
¼ 2rRð~GGÞ

b2Uð~GGÞ
þ 2v

bV

Z
exp wð~rrÞ

h i
sinðrð~rrÞÞ cosð~GG~rrÞd~rr; ðA:1Þ

oV R=lVT
eff

orIð~GGÞ
¼ 2rIð~GGÞ

b2Uð~GGÞ
� 2v

bV

Z
exp½wð~rrÞ� sinðrð~rrÞÞ sinð~GG~rrÞd~rr:
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